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Certain properties of Jacobi's polynomials (and, in particular, of Hegen-
bauer, Legendre's and Tchebysheff's pclynomialsi were established, and their
application in contact problems was given in [1]. This paper supplements
the previous results, ramely: the analogous properties are established here
for the polynomials of Tchepysneff~Laguerre and Tchebysheff-Hermite, and
their application in constructing an approximate solution of the three-
dimensional contact problem of a semi-infinite plate and the elastic half-
space is‘'given.

1. Let us note that Af a linear operator 7 dis given, such that the
corresponding integral equation

Lq)m=p(.‘1:) m (m=0v 1!2!"') (11)

has the unique integrable solution of the form
m
9, (@) =p (@) 2 b™%, bW EbBH L0 mk=0,1,2,..) (1.2)
k=0
then a system of polynomials

m
p,, (2) = Noemai,  epm =1 (m=0,1,2..) (1.3)
=0
which are guite simply related to the elgenfunctions of the operator 1 can
be constructed, namely

L Ip, (z) p (2)] = p,p.(2) Py, (2) (m=0,1,2...) (1.4)

and, moreover
B, = [bn™1 (1.5)

The valldity of the above statement may be veriflied in the same way as
in [1]. Purther, we will make use of the result of [2] in which the solution
of the integral equation

544
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(o2

2¢ S K, (t—1)
Var ¢/, —p [t —<*

is constructed. Eere, K“,(z) is the Macdonald's function.

In particular, it follows from the above paper, that for f (i) = e the
solution @, (#) of Equation (1.6) has the form

t
_ sinon w|e? _ €% a(s-1) _ 1 ;
D5 () n T'(w) (1 +0) [—F + G)SST et ds:l ((1) =3 P-) (1.1

¢ () dr = () (t>0,|Reu|<%) (1.6)
0

and, therefore, the solution of the following equation
[+ 0]

2% S K, (t—7) ¢ (0
Var(s—p
1s defined by Formula

@ () = (— Pmehre [ ﬁ; P (‘”J

dt=¢e't™ (t>0) (1.8)
S o —p
F jt—t| T

6=1

Hence, after differentiating m times we find

4 (m k=BT (4 4 m — k — ;) ml
m () =€t ) b Mk, g ™ = 2 2 (1.9)
¥ ) ,20 * y V2l —Y) (m — BIT @+ k+ 1y

Therefore, the elgenvalues u, of the integral operator which is contained
in (1.8), in accordance with (1.5) and (1.9), will have the form

P = 227 )T Uy +p + m) (1.10)

Following the same considerations as in [1], and bearing in mind the ortho-
gonality and normalization conditions [3] for the Tchebysheff-Laguerre poly-
nomials Lm“ (z), one can obtain, on one hand the integral property of the
above polynomials

oo

1 C Ky (le—vDe™ oy, = LChtptm gty v
V:?I‘(‘/z—-ll)§ |t —g[Fah—® L™ (27) dv = Vam! m )
(t>0,m=0,1,2..) (1.11)
and on the other hand, the expansion which converges in the mean
K (z—y)) _ VAT Ch—p) ) 7 - —
L = L, 2x) Ly, 2 1.12
P e R B

For p = 0 the relations (1.11) and (1.12) become

1 ¢ r W it m (2m—1)l
—’—'-&Ko(lt—tl)e L @)= g o

1}

et Ly (2t) (1.13)

L Ko(z—y) = eV X Lo (@22) L (2) (1.14)
m=0

In view of the well known connection [3] between the Hermite's and Laguer-
re's polynomials
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Hyp (V8 = (— )22l L~ (1) (4.15)

the latter may be replaced by the former in the relations {1.1%) and {(1.15),
if that proves more expedilent.

Moreover, since K, (iz) = — ‘/zniHo(a) (x), 1t 1s easy to obtain a formal
transformation of the relation (1.13) into an analogous one for the second
Hankel function Hy(® (x). First a substitution £ = px, v =pnt (u > 0), is made
in {1.13), and then the obtained result is continued gnalytlically into the
first quadrant of the complex domain of R {0 <C argp < Y.n). Thus we obtain

@ =i)
Rl 1
w2 - iV — 1 L (2idx
2 (| = — E)) L, @iAl) df — 2i E: @m — DI Ly~ (i) (1.16)
1 Ee‘)‘a V 2ia 2ml! M=
0
Let us note that the integral operator contained in (1.13) gives rise to
the Integral equation of the first kind, to which the problem of pressing s
semi-infinite punch into the elastic half-space [4] is reduced, and the

integral operator contained in {1.16) plays an analogous role in the Sommer-
feld's problem {5].

2. Bateman's well known result {[6], p.171), proved for the integral
equations of the second kind, remains valid for the integral equatlions of
the first kind in the following formulation.

Suppose that for Eguatlion

b

S""”’ NoWdy=1(x) (c<z<h @

a

in a certain class of functions we find the resolvent vy(x, y), 1.e. the
function by which the solution of Equation (2.1) can be presented in the

form b
v@={1@nrwa @2
a
Then for the integral equation with the kernel
k(z,y) 1* (@) ...f0* (@ Gy e o+ 8y
Koo =al 8*0 an oo | A=) ol @.3)
g W ey s 8un Gpg e v «f8yn

where: £ *{x) and g,*{y) are arbitrary functions, and @,, are arbitrary
numbers, the resolvent 1s glven in the form

T (Z, y) q)l* (3’)) L q”‘* ((E)

4 1% @) Ty — . - 2Ty Gin

Ty =gvl ...
@) Tpy — Fngc -+ Tpn — fnn
Tyy == yy . e 1"111 e am
A* = e e e .. (2.4)
where Ty~ %ng + ¢« *Tan " fnn
b b
Pt (@) = gf @it Wdn ut @)= S'r (v, 2) g* () 2.5)
a 2
b
(2.6}

= O @) 17 0 0

a
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This result, known from the theory of linear operators, is easily verified
by direct substitutlon of function

b
P (2) = S T, (z.9) f @) dy
a
into Eguation (2.1) with the kernel (2.3).

Consider an integral equation of the first kind with a symmetric kernel
K(x, y), representable in the form

K (xv y)= k(:c, y) '—K* (x1 y)

where x(x, y) and fK,(x, y) are also symmetric kernels. We will assume
that for the integral operator generated by the kernel x(x, y), the inverse
operator is known in & certain class of functions, as well as the complete
system of elgenfunctions g, (x), such that (¢,, 1s the Kronecker's symbol)

b b
(k@ e, dy=mg, @ 6. e, (@ dz = A (2.7)

For a sufficlently general case we can obtain the expansion

o
K,(z,y) = kgo m2=o @k, m &, (%) &, ¥) (@, m = T, 1)

Furthermore, we introduce the designation
n n

Kn(z,9) =k(z,9) — 2 ) ax,m 8 (2) £ (9) (2.8)

k=0 m:

The resolvent of the integral equation of the first kind with the kernel
{2.8) will be designated by T,(x, y). Assuming T,(x, y) to be known, let
us construct T, (x, y), 1.e. the resolvent of the integral equation of the
first kind with the kernel Km(x, y). It is easy to verify that

K,@Y) 8@ S,(2)
Koy (2, y) = —| 8na @) 0 1 (2.9)
S, (v 1 — 8
where

an = Qn,n, Sa (2) = _20 aj, n+1 8; (=)
j=

Bearing in mind that according to (2.7)
b
VEn (2, 9) £, ) dy = 1, 8, (2)
a
and introducing designatilons

n

b
Qn (2) = 3 @, ne1 § T (2, 3) &%) dy (2.10)

=0 a
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n b b
2 X aunntmen ) Y Tn (@ 9) £,(2) 8, () dedy  (2.41)

”
Iltgjs

we will have, in accordance with (2.4)

" T, (z,y) Paii8nn @) 9,(2)
Thi (2, 9) = A"—; Bk Bnsy (y) T —1 (2.12)
Qn () —1 %ni1 + Tn -

where

An* = My (@nsy + Tn) — |

After expanding the determinant, Formula (2.12) may be representei in the

form

8n+1 (%) Enay (V)
Lot (7, 9) = T (& 3) = 25302 — 20 (00 () £,,, () +

+ 8,01 (2) Q0 (1) + Mo Qn (2) Q0 () + Amii 8, (D) £, (0] (2.13)

Setting

L@ =1@n— 3 =000 S S o oe o) @14

m=0 Bmbom m=0 k=0

and utilizing Formulas (2.10) to (2.13), one finds that

@) W
1
Tan (2 9) =71(@Y — 2 T — 2 AR 6,(2) £, ()
m=0 mem m=0 k=0
where the following formulas will hold true for the coefficents;4é"+”
A, B.B
AV = A, — 2R (m, k< n)
5 " (2.15)
—1
AL =400 =" msn), A= 1
n n'n+i
where
< )
T
(n) 2 ar, n+1 xrAm.rr‘-), An = Bpa— Aniz (an+1 - kz Ak, n+1 )"kBk( )
r=0 =0
On the other hand, it can be readily shown that
— _ Bo(®) go(y) _ 8o(x) &0 (y)
l‘0 (1', y) T (I, y) lloko‘ A-o (407»0—}1-0)
Hence
A% = A (agho — po) ™! (2.16)

Thus, knowing ’409) and using the recurrence formulas (2.15), we can con-
struct the resolvent for the integral equation of the first kind with the

kernel (2.8).
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In the case of the Integral equation of the second kind
b

o0
@+ (ke vewa=1@ [Fen=3 1@ 0] @0
a m=0
which can be written down in the form of an equation of the first kind
b
S BE—9+k@ENe@dy=/fI(z) [6 (=) the impulse function]

a
for the coefflcients A4, g”, which define the resolvent

n n
T,(z,9) =8(@=p) — O D 47f* (2)g* ) (2.18)
k=0 j=0
of the equation

b n

V=04 X 1n* @ tn* W, @ dy = @)

a m=0

the recurrence formulas can be established in an analogous manner

AT = 4,00 4 A -1 B, Mo, k,j<n)

(2.19)

(n+1) Cj(n) . (n+1) Bk(n) _1

Aﬂ+l.5 = A G<n), Ak, n+l = A (k<< n), Anﬂ(’n.,&]). = An

n n
where
W N 4 M _ N1 4 (m 4
—_— n,
B, "= )go ity GV = ,‘Z_OAI:.(? ®k, n+1, a; = S f* (=) g* () dy

a

n n
Aﬂ= 1 +a1|.+1+ 2 Z Akf’;)a

k=0 j==0

a1, i, ni1 Gkx = @)
Here, it i1s easily found that
A4Q =0+

3. Let us indicate some possible ways of applying the above results to
the construction of approximate solutions of certailn integral equations of
mathematical physics.

Suppose it is required to construct an approximate solution of the integ-

ral equation a

0@+ Kz —sho@ds=1() 0O<S2<a) 3.1)
;

Retaining the (n+1)th term in Expansion (1.14), we obtain the following
approximate representation for the kernel of the integral equation

n
Ko(lz — s =mne >t 2 Lm"/’ (2x) Lm"/' 2s) (z,s>0)
m=0
by means of which we reduce (3.1) to the integral equation of (2.17) type.
Therefore, i1f the solution of Equation (3.1) with the kernel defined by the

above formula is designated by o §x) ({n+1)th approximation of the exact
solution), then according to {2.18 we will have

a
@ =1@—\TrEnseay (3.2)
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where
n n ‘ .
L* @y =3 2 4,727 (20) L (2y) eV
k=0 j=0

For the coefficients 4,Y the recurrence formulas (2.2
which by virtue of i (2.2) are vaiid, in

fk* (z) = gk* (z) = Vie'ka—'/’ (22)
one should set

a
;M =pBM, 41 =4D, ak,j-“:kSe—ngk"/‘ (22) L7 (22) dz  (3.3)
0

The last integral can be presented in the form
o, = b Loy — 2Py (o) G4

The numbers g¢,7, and the polynomial P (b) are defined by Formulas
1 foo)
0% = _2_% LT () L7 () de =

0

(=¥ @ =D & (=T A+ 29
R TR e T Y e Vi 3.9)
r=0
b P kti
Py; () =_e2_\ e LT W LT @ dt = ) ey Ly B) (3.6)
B me=p
where
2e = 2k = DI @/ — 1)U é Z’; (— 1)+ 2r 4 25 + 1)

@m + O A CITRIT (s — m) e — )l (T — o)

in order to verify the second equality in Formula (3.5) one should. replace
Lk'/zu) by its expression in terms of weight function and intergate by parts
k times. For the proof of the second equality in (3.6) p,,(?) should be
expanded into a serles of Laguerre's polynomials.

Formula (3.4) and, therefore, the formula for the approximate solution of
the integral equation (3.2)are simplified considerably for q = » , since in

that case g, ; = Aa, %3

Grinberg and Fok (7] have shown that the problem of coastal refraction
of electromagnetic waves can be reduced to the integral equation (3.1) for
a =« . The authors have obtalned the exact solutlon of the above integral
equation in the form of a rather complex double quadrature; conseqQuently,
they proposed an approximate solution valid only if the wave Incidence angle
is not too oblique. The approximate solution proposed in this paper does
not contain any quadratures and may be used, generally speaking, for any
parameters of Equation (3.1).

4, Let us apply the results obtalned in the first two sectlons to the
conatruction of an approximate solution of the contact problem of a semi-
infinite plate with the elastic half-space, It has been shown in [8]) that
if a semi-infinite plate with the flexural rigidity p 1s acted upon by a
unit force at point y = 0 , x = » , then the Fourier transform px(x) of
the contact stress [9] must satisfy the lntegral equation
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e 2]

(iE =D+ 5 6 RE—Dp® =/ @r>0ED

o

where o
fi(@) =& (4o + AAa) e+ 5 G A (z — b)] (4.2)
o] R n
1 emits E .
G(t) = o \ Tl =g (4.3)

Here, A4, and 4, are arbitrary constants, v; + E, are the Poisson's
ratio and modulus of elasticity of the half space.

After Pk(x) is found, the Fourlier transform wx(x) of the plate deflec-
tions may be determined from one of the Formulas [8 and 9]

=]

n@=2{K0z—t) e e (=20522) @9

0

Dun (z) = (Ao + A Ae) = + 5[ GIA (2 —b)]— § GIM (z— &) p, (B)dE] @29

The arbitrary constants A, and 4, should be found from the free edge
conditions for the plate [8 and 9]

0@ (+ 0) — Mvios (+0) = 0, wa® (4 0) — A2 (2 — ) us® (+ 0) = 0 (4.6)

Multiplying both sides of Equation (%.1) by +2/n and making a substitu-
tion

=t M=1 gp(f)=r@ (2)n(L)=r0 @1
vwe obtain

& 2 s c3
§ Frklt—ch+ (2) fee—opma=rn 68
The resulting expansions are

o) (o)
Gl—n)=e®IN 3y, Lh@)L ™ 20). (4.9)
k=0 m=0
In view of the orthogonality of the Laguerre's polynomials, we can write

down that
[ee]

bim _ k! m! -1, -t dt
2 TR AT m)§ L™ @0 In (0 €7 7 (4.10)
where
I, ()= \ G (t — ) Ly~ "(27) &* 3T (4.11)
0 V=

By virtue of the convolution theorem for Fourier transforms, and taking
into account (4.3), the last integral may be put into the form
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o) )
1 S @, () e ¥ gy

I =L
mO Zgm ) Ta e (4.12)
where
o]
D, (w) = S Ly~ (21) - 28 (=)"Tim 4 1) (1 + i)™ (4.13)
0 V= ml (1 — )™ .

In evaluating the inteﬁral contained in (4.13) Formula 7.41% (8) from [3]
was used. Substituting (%.12) into (4.,10), after the interchange of integ-
rals and application of Formula (4.13), we obtain

oo (4.14)
p o L R (—=)**™ gu 12 {
N T A I S U

The last equality was established with the aid of Formula 8381 (1) from
[3], and the well known properties of Euler's gamma-function.

If both sides of Equation (4.8) are multiplied by £ , and 1f we set

ED = (2) (0Kt — <), g, 00=(2)" L@y (@15)
thlp @, O =9 @), /*(®);  agpn=—0%m, 0= —% ;l:«
4 (4.16)

%n = 2% (9 —4n)
then, in view of (%.9), we obtain

oo}

\[Fe 0= 3 3 ang0e,@e@dr=70 @17

0

where, due to (1.13) and (4.15), the relations (2.7) will be valid (for g =0,
b = ), and the following relation as well

b= A= @ml)T@m— DI (g = Ay = 1) (4.18)

Using Formulas (4.2), {(4.7), (%.9), {4.1%) and (4.16) the right-hand side
of the integral equation (4#.17) can be written down in the form

F) = Acg () —Are () +0° 3 g, () 3 arng, @B (419)
where
B=2Ab, AfF=02/n)"3(A,+YA), Ar=Y,F@2/n)"A, (4.20)

According to the theory given in Section 2, the solution of the integral
equation (4.17) for the case when (n+ 1)th term of the infinite sum contalned
in it is retained, will be determined by Formula

o0

¢, (0= Tu(t, /() dr

0



Classical polynomials and their application in contact problems

553
or, after (2. 14) is substituted in the above and in view of (4.19)
. (4.21)
P () =—A* 2 4,08, () +5 LA 2 4 Dg, (t) — o 2 wx™ (B) g, (¥)
where - ’
o™ (B) = 202 AmtmrAr g, B) VB (4.22)

fherefore, due to (%.15), (4.16) and (%.7), the Fourler transform 1% (x)
of the contact stress in the (n +1)th approximation is determined by Formula

P == ()" ()" e {ao ] 2 AL (2ha) —

— —A * 2 APL M)  &® 2 o™ (AB) L7 (zxx)} @>0)

k=0

(4.23)

It remains now to find the values of the arbitrary constants 4,* and 4,
by satisfying the free edge conditions (%4.6).

The substitution of (4.23) into (4.4) with the use of relation (1.13)

glves
™ (@) = — (2] 0, [A * Z A 0L (202) —
k=0

— —A * 2, A DML (2hz) + 03 D) wp™ (Mb) MLy (2xx)] (@>0) (4.24)
k=0

With the aid of formula 8.971 (2) from [3] it s easy to show that
i min (n, k)

E;;e"‘-"L}’“(Zkz):(— A)e-hx Eo (1 )2L 2 (20z)
and, hence,
n min (n, k)
e wal = wrefan =" 54 e

Taking into account (4.24) and (4.25), we find

[:rr W (.Z‘)L=0 - (_ }‘,)" 01( J2t ) {A * E Ay, (n)}“kck(r) -

— —A * Z A P + 6 2 wxt™ (Ab) xkckm} (4.26)
k=0

k=0
Substituting the obtained values of the derivatives of wx"(x) for x=0
into the free edge conditions (4.6), we find

Ao B, o™ (ab) — B, (™ (Ab) A B,59Qy™ (Ab)— B (M0,™ (Ab)
(. ) ) ) ' - ° ) )
B,'B, Y — B, "B, 2 B "B —B, "B,

where
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jid n
} } { : .
B = ;SA;;“; Mg, @) = 3 o™ @) hed
¥ == & oy
& = e — ey, dY = ¥ - (2 — v) ¢ @

A substitution of (4,27) into (4.23) and (4.24) will yleld )y wplx),
after which, by means of Formulas {from [8 and 9])

o)

P (z yhwnlz, y) = —E‘;& [p," (=), wi™ (2] cos Ay dh {4.28)
i}

we obtain, in the (n + 1)th approximation, the contasct stress Pa (:2:, y) and
the deflections of the semi-infinite plate w, (z, y), acted upon by & unit
concentrated force at point y =0, 2 =5 > 0

The guantities g;‘,fﬁ};, contained in Formulas {4.23) ana {4.24} should e
evaluated by means of recurrence formulas (2.15), taking into acsount (4.16)
and (4.18), and for the first approximation (n = 0), in accordance with

{2.16) we have .
Ao = (1 Y500
Thus, the applicstion of the proposed epproximate method to the contact
preblem of a8 semi-infinite plate ylelds, for any degree of spproximation,
the final formulas (4.26), (4.23), (%.24) and (%.2r), containing vnly one

quadrature instead of the fourfold quadrature given by the exact method (8
and 91,

In conelusion, we nots thit using the resulis of the first two sections,
and Grinberg?s resuits {10}, one can work cut anslogous epproximibte methods
of solution of integral equations, to which the diffraction problem of elec~
tromagnetic waves on & strip of finite width, and the three-dimerinional probe
lem of bending of an infinite beam ont the elastic half-space are reduced.
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